ねこすたっと

ねこの気持ちと統計について悩む筆者の備忘録的ページ。

bias

生存時間データ分類(4):Multi-state type(mstateパッケージ)[R]

パッケージとデータセットの準備 想定する多状態モデル transMat( )を使って遷移行列(transition matrix)を指定する path( )で遷移経路を確認する msprep( )でデータを縦長に変形する events( )で移行の様子を確認する coxph( )とmisfit( )を使ってモデル…

柔軟なリスク回帰モデルを使った生存時間解析(timeregパッケージ, riskRegressionパッケージ)[R]

柔軟なリスク回帰モデル(flexible risk regression model)とは 色々なパッケージを使ってFine-Grayモデルを当てはめる パッケージとデータセットの準備 方法1:timeregパッケージ comp.risk( )を使う 方法2:riskRegressionパッケージ riskRegression( )を…

生存時間データ分類(3):Competing type(tidycmprskパッケージ)[R]

競合リスクを含んだ生存時間解析 原因別ハザードモデル(cause-specific hazard model) 部分分布ハザードモデル(subdistribution hazard model) tidycmprskパッケージを使ってFine-Grayモデルに当てはめる パッケージとデータセットの準備 crr( )でモデル…

マルチレベルデータの解析方法(3):一般化推定方程式(GEE)と混合効果モデル(MEM)のどちらを使うべきか

マルチレベルデータの解析 推定方法の概要 最尤推定法(Maximum Likelihood Estimation, MLE) 制限付き最尤推定法(Restricted Maximum Likelihood Estimation, REML) 一般化推定方程式(Generalized Estimating Equations, GEE) GEE vs. MEM 興味の対象 …

ROC解析でoptimismを補正したAUCを計算する(tidymodelsパッケージ)[R]

Optimismとは Optimism補正予測性能の求め方 tidymodelsパッケージを使ってoptimism-corrected AUROCを計算する bootstraps( )を使ってブートストラップサンプルを作成する optimismを計算する自作関数 map( )を使ってデータセットのリストに一括して適用す…

ブートストラップ(bootstrap)法で信頼区間を求める(bootパッケージ)[R]

例示のための元データの作成 bootパッケージを使って信頼区間を計算する boot( )を使ってブートストラップサンプル毎の統計量を計算する boot.ci( )を使ってブートストラップ信頼区間を計算する 信頼区間を計算するアルゴリズム色々 表記のルール バイアス …

区間打ち切りデータ(interval censored data)を解析する(icenRegパッケージ)[R]

パッケージとデータの準備 in_np( )を使ってモデルに当てはめずに生存曲線を描く in_sp( )を使ってセミパラメトリックモデルを当てはめる 複数コアで並列計算したいとき in_par( )を使ってパラメトリックモデルに当てはめる おわりに 参考資料 生存時間デー…